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Abstract--A method is proposed to compute some characteristics of a possible stress tensor related to striations 
measured in a given faulted area. If several tectonic phases are responsible for the striations the method separates 
and determines the successive stress tensors. The iterative algorithm consists of alternatively : (a) sorting the data 
attributed to a tectonic phase; and (b) computing the characteristics of the stress tensor of this phase. The method is 
tested using an application to synthetic and actual data. 

INTRODUCTION 

RECENT studies (e.g. Molnar & Tapponnier 1975) have 
shown that during orogenesis, brittle deformation is 
important and affects much larger areas than plastic 
deformation which is located in the axial zones of 
orogenic belts. Furthermore, such studies have shown 
that the analysis of the stress field is the best way to 
integrate strains of different intensities and natures within 
the same model. Therefore, in order to control dynamic 
models, it is of primary importance to determine the local 
stress state for a given region. In the axial zone of orogenic 
belts, plastic deformation prevails and depends on too 
many parameters (pressure, temperature, external ro- 
tations, primary anisotropies ztc.) to be related simply to 
the stresses. By contrast, in areas where brittle defor- 
mation is prevalent, the deformation is localized along 
major faults bordering areas where deformation is less 
important and may be used for the determination of the 
stress tensors (Mattauer & Mercier 1980). The aim of this 
contribution is to show that we can determine some 
elements of one or several successive stress states, using 
striations measured on fault planes within these slightly 
deformed areas. 

Using the approach of Bott (1959) and Price (1966), 
several authors (e.g. Carey & Brunier 1974, Carey 1976, 
Carey 1979, Armijo & Cisternas 1978, Angelier & Goguel 
1979, Angelier & Manousis 1980) have proposed quanti- 
tative computer-aided methods for the interpretation of 
various fault plane striations for a given area of faulting. 
The basic assumptions used are that for a particular place, 
a given tectonic event is characterized by one homo- 
geneous stress tensor and that for a given phase, the 
resulting movement (responsible for the striation) has the 
same direction and sense as the resolved shear stress 
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(physical limits arising from these assumptions will be 
discussed later). 

If the previous assumptions are satisfied, then the 
deviatoric stress tensor of a tectonic event can be ob- 
tained, from several independent data related to this 
event, to within a multiplicative constant. In the case of 
superimposed tectonic phases, the problem consists of 
defining the relevant stress tensors and selecting the 
corresponding striated fault planes. Methods for picking 
out the data corresponding to two different tectonic 
phases have been applied to synthetic and actual data 
(Armijo & Cisternas 1978, Carey 1979, Etchecopar et al. 

1980, Angelier & Manousis 1980). 
The aim of this work is to present a general method for 

reducing microtectonic observations in a faulted area. 
After giving an example of a striated plane, we first 
develop an inverse technique for computing one stress 
tensor and apply this technique to a set of data where 
synchronous movement is insured. We then describe an 
iterative method applicable to multiphase tectonics where 
the sorting of the data and the computation of the stress 
tensors are performed alternatively. When applied to 
synthetic and actual data, this method is shown to 
separate successfully several superimposed tectonic 
phases. 

MEASUREMENTS 

A typical example of a striated fault plane is shown in 
Fig. 1. For each plane bearing a striation we define two 
unit vectors n and s; n is the unit normal which has an 
upward vertical component, and s is the unit vector 
parallel to the striation and which is orientated parallel to 
the movement of the upper block with respect to a lower 
one. 
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INVERSE PROBLEM APPLIED TO 
MONOPHASED DATA 

Basic assumptions and statement of the problem 

Necessary conditions for obtaining quantitative infor- 
mation about the stress tensor using striation data have 
been given by Arthaud (1969) and Carey (1976). They are 
summarized as follows. (a) In the considered area the state 
of stress is homogeneous. In particular the presence of 
faults does not modify the stress tensor, which can be 
verified only if the displacements are small compared with 
fault plane dimensions. (b) The medium is isotropic and 
the tangential force applied on a given plane results in a 
tangential displacement in the direction and orientation 
of this force. (c) No distributed torque exists in the 
medium, that is the stress tensor is a symmetric one. Using 
these assumptions, the stress state which is responsible for 
the observed displacement is characterized, in the re- 
ferential frame of its principal directions, by a diagonal 
tensor :  

T =  0 0-2 0 

0 0 a3 

when al  I> 0-2/> a3. 

(I) 

This tensor T can be separated into an isotropic 
pressure part P and a deviatoric one D. The referential of 
the principal axes is described by its three Euler's angles 
(4, 0 and q~, see Fig. 2) with respect to geographical axes 
ox, y and z(x, y and z are respectively north horizontal, 
east horizontal, and downward vertical); thus six 
quantities al ,  a2, a3, 4, 0 and ~b are necessary to define a 
tensor T. 

The resulting force on a plane with unit normal n has a 
tangential component ft given by (Fig. 3): 

f t  ---- T "n - (n. T .  n)n (2) 

o 

cr 3 

down 

N o r t h  
x 

tx 2 

, y East 

Fig. 2. Euler's angles (@, 0 and O) describing the three rotations which 
specify the frame of principal stress directions (*t, a2, and *3) with 

respect to the geographical reference frame (ox ,  y and z). 

corresponding to a unit vector: 

f, 
t = II ft I---[ (2a)  

Only the deviatoric part D of T contributes to this 
tangential force since the pressure part P results in a force 
which is normal to the plane. Moreover the direction and 
orientation of ft (i.e. of t) remain unchanged when T is 
multiplied by an arbitrary positive constant. Therefore 
the unit vector t in the direction of the tangential force 
depends only on four parameters which give (a) the 
principal directions, i.e. the three Euler's angles 4, 0 and ~b, 
and (b) the relative ratio of principal stresses which can be 
characterized by: 

R --- 0-2 - 0-3 (3) 
0-1 - -  0"3 

with 0 ~< R ~< 1. These four parameters do not define a 
unique tensor but a set of stress tensors characterized by, 
for example, one normalized deviatoric tensor Do (with 
at - 0-3 = 1); every tensor T being of the form 

T = 2Do + #I (4) 

(with 2 > 0 and I the unit tensor) belongs to this set and 
causes, on every plane surface, a displacement with the 
same unit vector t. 

As a result of this ambiguity, striated planes can only be 
expected to give such a normalized deviatoric tensor Do. 
In order to obtain the actual tensor, further assumptions 
must be made for estimates of 2 and/z (lithostatic pressure, 
experimental fracture tests, etc.). 

Now consider N fault planes with unit normals n~ (i 
= 1 . . . .  N) on which striations with unit vectors st (i 
= 1 . . . .  N) assumed to correspond to the same tectonic 
stress tensor have been measured. The inverse problem 
consists of determining the parameters (@, 0, Oh, R) of the 
tensor Do - -  and via equation (4) of the corresponding set 
of tensors T - -  which explains the data, i.e. such that for 
each i, the unit vector ti of the tangential force corresponds 
to the unit vector s~ of the observed striation (Fig. 3). If we 
define the vector function .W~(@, 0, q~, R) which, for a given 
nt, maps (4, 0, q~, R) into ti: then 

T" at - (n t .  T -  at) at (5)  
ti = .La,(4, 0, q~, R) = II T .  nt - (n,. T-  n,) n t II 

The parameters 4, 0, q5 and R to be obtained are those 
which give the 'best agreement' between h and sv 

Previous methods 

At least four striations on independent fault planes are 
in principal necessary to derive the four parameters @, 0, ~b 
and R. For N > 4 the problem is in general overcon- 
strained and, because of various error causes, it becomes 
impossible to verify st = tt for each fault. 

Carey & Brunier (1974) and Carey (1976) define a 
vector ut: 

ui = s t x  nt (6) 



qP 

Fig. 1. An example of a striation with an orientation (s) indicated by the arrow. 
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fl 

~\~/~t 

Fig. 3. Block-diagram illustrating a fault plane with normal n on which a 
pressure force fis exerted corresponding to a resolved shear stress ft with 

unit vector t. 

which belongs to the plane and is perpendicular to the 
observed striation. The parameters of T which are 
calculated by this method are those which give a minimum 
of 

N 

(u," t,) 
i f f i l  

Angelier & Goguel (1979) use a least square minimi- 
zation of the components of calculated tangential stress~ 
perpendicular to the measured striations, that is they 
search the parameters of T which minimize 

N 
S = ~. [(nt xs , ) . (T  .n,)] 2. (7) 

i = l  

They obtain a mean stress tensor without iteration, but 
this method cannot be applied if more than one phase is 
involved in the data. 

Armijo & Cisternas (1978) discussed the origin of the 
angular deviations between the observed striations st and 
the theoretical ones; these deviations arise from (a) 
measurements errors on st and ni, and Co) local fluc- 
tuations of the stress tensor. A stochastic approach, using 
an a priori estimate of the covariance matrix of the 'model' 
(i.e., ~, 0, ~ and R) is then used in order to derive the 
parameters. However this estimate is largely arbitrary; 
besides, in the proposed method, the three components of 
st are used as independent data whereas obviously tt has 
only one degree of freedom (since ti "at = 0 and II t~ H -- 1) 
and each striation only corresponds to one scalar datum. 

The algorithm developed in this paper is somewhat 
different from the ones just described; it is also concerned 
with several improvements concerning the analysis of the 
angular deviations and also the separation of data 
corresponding to several different tectonic phases (this 
last topic is developed in a later paragraph). 

Description of the algorithm 

The angular deviations between observed and com- 
puted striations are assumed to be due to some random 
noise process arising from measurement and/or from 
some physical process not accounted for by the model (e.g. 
local fluctuations of the stress tensor). Therefore, in 
contrast with the work of Armijo & Cisternas (1978) no 
further assumption about the model fluctuations needs to 
be made. 

For a given set of N observed striations s~ (i = 1 .... N) 
on fault planes with normal ni (i = 1 ....  N), the inverse 
SG3:1 D 

problem is stated as follows: find the four parameters ~, O, 
and R of the stress tensor such that the variance of 

angular deviations defined by: 
N 

Q-- Y, (s,, 0, R)> (8) 
i--1 

is minimum (the bracket ( ) denotes the angle between 
the two vectors). The algorithm is composed of three 
steps. 

Step 1: first estimate. As often occurs in non-linear 
optimization processes, the choice of an initial parameter 
set is of primary importance; a wrong choice of initial 
values may lead to a secondary minimum and therefore to 
meaningless solutions. The initial choice may be guided 
by geological arguments, for example using results ob- 
tained from data collected at a small distance from the 
studied area, or using microt~ctonic structures other than 
the striated planes (e.g. tension gashes and stylofite peaks 
allow us to choose ~a and ~ principal axes respectively of 
the initial solution); otherwise it is necessary to proceed 
by trials in the whole range of variations of parameters (~, 
O, dp and R) that is 

[0, ~2 × I:0, ~2 × I:0, ~:] × I:0, 12. 

An efficient way of performing such trials consists in using 
randomly chosen parameters with a uniform probabifity 
density over their variation range. Since their variation 
interval is hounded in IR 4, a relatively small number of 
such trials (50-100) is generally sufficient to obtain an 
initial solution quite close to the final one, insuring a rapid 
convergence of the following iterative processes. 

Step 2: optimization process. The parameters ~/, 0, ~b and 
R obtained in the former step and corresponding to the 
smallest variance are used as an initial guess for a fast non- 
linear optimizing procedure using a technique proposed 
by Rosenbrock (1960) which proceeds by steps in the 
parameter space, followed by a success or failure test. 
Step 3: refinement of the solution, analysis of the angular 
deviations. The previous step provides a solution (¢o, 0o, 
~o, Ro) close to the optimum; it is now possible to 
linearize around this solution in order to obtain a more 
refined one. Variance Q, given by (8), is approached by a 
quadratic form Q' such that: 

N N 

Q ~- Q'= ~ ((-~lo, si) + ~ auAxj) ~ (9) 
i=1 j = l  

(Axl, Ax2, Ax3, Ax4) being the increment vector (~, - ~o, 
0 - 0o, ~ - ~bo, R - Ro) and all, al2, at3, a~4 the partial 
derivatives of (LP~, sl> with respect to ~,, 0, ~b and R. From 
classical least square analysis (Linnik 1963) the minimum 
of Q' is obtained for: 

Ax = (AtA) - ~ A*y (10) 

y being the n-component vector of angular deviations 
(-~to, si) and A the matrix (au). This process can be 
iterated until a stable solution is obtained. Note that, 
when (AtA) is ill-conditioned, the classical regularizing 
technique (Marquardt 1970) is to replace (10) by: 

Ax = (A*A + ~t2I)- 1A r (11) 
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(with I the unit matrix and ~ an arbitrary real parameter) 
which is just identical to the expression used by Armijo & 
Cisternas (1978). 

Using the linearized expression (9), the classical least 
square theory (Linnik 1963, Hamilton 1964) provides 
further information about data errors and model un- 
certainty. To within the linear approximations used, the 
angular deviations between the observed and theoretical 
striations have a standard deviation given by: 

/ (  Qmi. '~ (12) 
a =NI t N  _ 41I' 

(Q.i. is the minimum of Q). If (~bo, 0o, 4bo, lo )  denotes the 
optimal model, the actual model belongs, with a con- 
fidence level of(1 - ~,) 100 To, to that subset ofthe (@, 0, Oh, 
R) space defined by 

( 4 F ( N ' N - 4 ' I - o t ) )  Q(~k,O, dp, R) <~ Qmin 1 N---S- ~ 

f13) 
[F(v t, v2,p) is the F distribution with degrees of freedom 
v 1, v2]. In the linear approximation which we will assume 
valid here, the domain defined by (13) is a 4-D hyper- 
ellipsoid with (~ko, 0o, 0o, Ro) as a centre; geometrical 
properties of conjugate directions can then be used in 
order to derive the max/rain of any linear- or linearized- 
function of~k, 0, 0 and R such as, for example, the azimuth 
and dip of a principal direction. 

Another important problem is to find, for each datum, 
a satisfactory model which is also as close as possible to 
the optimal one, To(~'o, 0o, Oo, Ro). Define a 'distance' 
between two tensors To and T by: 

d2(T, To) = (i - Ro) 2 ( t r ° ,a l )  2 

+ Ro(~3,~3) + ( R -  Ro) 2 (14) 

(a  °, cri) being the angle between the ith principal axis of 
tensors To and T (this formula accounts for possible 
isotropy of the stress tensor). 

The problem is to find Tl, a tensor such that: (ti, st) 
- 0, the 'distance' defined by (14) being a minimum. The 
solution using a Lagrange multiplier is straightforward. 
This last analysis may appear to be inconsistent with 
previous assumptions about the angular deviations; in 
fact, as will be seen later, it can give information upon the 
amplitude of possible fluctuations with time and space of 
the stress tensor. 

E -W fault, probably active during sedimentation (Ar- 
thaud et al. 1977). The stratification dips 20 ° SE. A 
horizontal Triassic succession unconformably overlies the 
Permian (Fig. 4). 

Because the material was not completely indurated 
when the faulting occurred, we expected that the tensor 
would have been an extensional tensor with the principal 
axis a 1 normal to the bedding. However the tensor T t 

obtained from the data (Fig. 5a) has al axes vertical and a 
very small R ratio (R = 0.09). In order to control this 
result we have, in a second trial, imposed a tensor T 2 
deduced from Tt by a rotation pulling the principal stress 
at in a position normal to the bedding (Fig. 5b). In this 
case the angular deviations between actual and computed 
striations are clearly larger than for tensor T~. Starting 
from T2 we have carried out the minimization step and we 
have obtained a tensor identical to T r This result 
demonstrates that the tilting of the bedding predates the 
induration of the sediments. It also shows that in a simple 
case like this one, the tensor axes can be defined with fairly 
good accuracy,. 

In Fig. 6(a) the confidence domains at a confidence level 
of 95 To for each of the principal axes are shown. The one 
for the a~ axes (deviation less than 3.5 °) is very small 
which insures that the tilting was necessarily prior to the 
tectonic event. The ones for the a2 and a3 axes are greater 
and elongated in the horizontal direction; explained by 
the very low value of the ratio R. For the same confidence 
level the ratio R has a confidence range between 0.03 and 
0.15 which indicates that the direction of the 0"3 axis is 
significantly determined; in fact the direction of a3 is 
normal to the major normal fault limiting the basin. 

For each striated plane we have calculated, as explained 
in the preceding paragraph, a satisfactory tensor as close 
as possible to the final solution and displayed as the 
direction of a~ on Fig. 6(b). The deviations with respect to 
the average computed direction are very small (a few 
degrees); they may arise from several causes, one of which 
is discussed in the Appendix (it is shown that, for an elastic 
medium with an elliptic crack representing a fault, the 
assumption that the tangential force arising from the 
regional stress state has to be parallel to the displacements 
may be erroneous by some dtgrees). 

INVERSE P R O B L E M  A P P L I E D  TO 
POLYPHASED DATA 

Case study: synsedimentary tectonics in a Permian basin Statement of the problem 

As an example of  the determination of  a stress tensor in 
the case of a single deformation phase, we have treated a 
set of 38 striated planes measured in the Saxonian of the 
Permian Basin of Lod~ve (H~rault, France). The data list 
is given in Table 1. The aspect of these striations (which 
can be described as 'soft' striations) shows clearly that 
they developed before the sediment was indurated. The 
Permian sequence comprises of flood-plain sediments 
deposited in a half-graben limited to the south by a large 

In general, rocks in a faulted area have been affected by 
several successive tectonics events corresponding to sev- 
eral stress tensors. In this case the inverse problem is to 
obtain the stress tensors and also to sort out from the 
observed data, the striations which are associated with 
each tectonic stress tensor. Generally, only a few tectonic 
phases have affected a given area. 

In order to define a tectonic phase (i.e. a stress tensor) 
and the corresponding striations, the following idea is 
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Table 1. Field data from the Permian basin of Lod6ve. Each set of data is composed of a 
fault plane measurement (St = strike; PI = Plunge; Q = quadrant) and striation 
measurement (P = pitch; RD = reference direction for pitch measurement or Az 

= azimuth when the fault plane is nearly horizontal; SM = sense of movement) 

No. St PI Q P RD Az SM 

1 150 85 E 55 N N 
2 85 58 N 90 N 
3 97 75 N 90 N 
4 120 70 N 75 W N 
5 125 70 N 80 W N 
6 90 85 N 85 E N 
7 5 75 E 90 N 
8 110 65 N 85 W N 
9 100 60 N 90 N 

10 100 70 S 90 N 
11 85 70 S 90 N 
12 120 62 S 09 N 
13 100 55 N 90 N 
14 129 45 S 35 N 
15 122 70 N 75 W N 
16 125 70 N 75 W N 
17 125 46 S 25 N 
18 84 75 S 82 W N 
19 120 80 N 70 W N 
20 2 72 E 75 N N 
21 106 74 S 90 N 
22 136 65 E 70 N N 
23 10 86 W 85 N N 
24 37 85 W 70 N N 
25 20 70 W 90 N 
26 0 85 E 85 S N 
27 85 55 N 75 E N 
28 130 75 N 80 W N 
29 15 86 W 80 N N 
30 30 38 W 114 N 
31 95 60 S 75 W N 
32 105 86 N 60 W N 
33 105 75 N 90 N 
34 130 75 N 80 W N 
35 110 80 N 70 W N 
36 90 48 N 80 W N 
37 100 49 N 85 E N 
38 20 45 W 95 N 

SE 6 

5 K m ~ ~ /  

2 0  gm 

N W  

Fig. 4. Cross section of the Permian basin of Lod6ve (Herault, France). 1, basement ; 2, Stcphanian ; 3, Autunian ; 4, Saxonian ; 5, 
Trias; 6, post-Triassic series; 7, major normal fault; 8, Triassic unconformity (after Arthaud et al. 1977). 
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Fig. 5. (a) Schmidt projection (lower hemisphere) of principal stress tensor directions obtained using the method described. The 
dotted arc corresponds to the bedding. In the histogram of residuals between observed and computed striations the horizontal 
axis is scaled in radian~ (b) Schmidt projection of principal directions of an assumed stress tensor, imposed to be parallel (¢z 
and ¢3) and perpendicular (or) to the bedding. Histogram shows resulting residuals between observed and computed striations. 
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Fig. 6. (a) Schmidt projection of principal stress directions with their 
confidence domain (at 90 % confidence level) displayed by hatched area 
for ot ( × ), o~ (+) and o~ (o) principal stress directions. (b) Enlarged 
view of the central part of the previous Schmidt projection. Each cross 
(+) corresponds to the ct direction of a tensor which (i) perfectly 
explains one datum, and (ii) is  as close as possible to the optimal solution 

given above. 

developed; if n data (n ~ N) are due to the same tectonic 
phase, the variance of angular deviations is expected to be 
smaller than if the n data correspond to different phases. 
Since the number  of phases is not known and since no a 
priori information exists about  the correspondence be- 
tween striations and tectonic phases, the algorithm de- 
veloped below, needs to be tested seriously in order to 
trust the results obtained. 

Description of the algorithm 

This is only a modification of the method used in the 
situation of monophased data. 

Step I : a great number  of tensors (100 or more) is tried, 
using randomly chosen parameters (¢, 0, ~b, R); for each of 
these tensors one calculates for each of the N fault planes 
the associated theoretical striation direction; the n < N 
fault planes (for the choice of n see the next paragraph) 
which give the n smallest angles between the theoretical 
and actual striations are selected; then the associated 
quadratic sum S of these n angular deviations is calcu- 
lated. Among all these tensors, the one with the smallest 
value of S, To, is kept. 

Step 2: using as an initial guess the parameters  (¢o, 0o, ~o, 
Ro) o f T  obtained by step 1 and as an initial selection the n 
fault planes giving the smallest deviations, modifications 
of the parameters are performed (as described in the 
preceding paragraph) in order to minimize the quadratic 
sum S of the angular deviations for these n selected data. 
Then a new selection of observed striations is initiated: 
some data not consistent with the new tensor can 
eventually be replaced by others not used during the 



Determination of stress tensors from striations on faults 59 

previous stage and a new optimizing procedure is iterated. 
This method of alternating optimization and selection 
was found to converge quickly if, in the initial guess, a 
broad majority of the data belongs to the same tectonic 
p h a s e .  

Step 3 : as for monophased data, it leads to an improved 
solution with its confidence domain. 

The data which are not explained by the computed 
tensor are used to derive another tensor corresponding to 
some other phase, the procedure starting from step 1. 
Eventually, tectonic phases for which confidence domains 
overlap can be regrouped. 

An artificial example with emphasis on the choice of the 
percentage n/N 

A critical point of this method is concerned with the a 
priori choice of the number n of data (or corresponding 
percentage n/N) on which the minimization has to be 
carried out. In this section we show on a synthetic 
example that it is possible to determine an optimum value 
of n by using several criteria. 

In order to provide a synthetic example, three sets of 
data from several regions have been mixed together; each 
set corresponds to a particular tensor already well de- 
termined. Twenty-four data out of 48 (i.e. 50 ~ )  cor- 
respond to a first tensor T1; and 11 and 13 data 
respectively correspond to the second and the third 
tensors, T2 and T3. The three tensors Tt, T2 and T3 are 
shown on Fig. 7(a). 

When using all data, as for the monophased example, 

the obtained tensor (Fig. 7b) is the same for every random 
choice of the initial solution; it is a compromise between 
the three actual tensors shown on Fig,. 7(a), and the 
histogram of associated angular deviations is flat (Fig. 7c). 
Moreover, for all the angular deviations (even the smal- 
lest), data belonging to each of the three tensors Tt, T~ 
and T3 are mixed together. Therefore if selection of data is 
not performed the solution obtained is without 
significance. 

For each of the following percentages: 30, 40, 50, 60 and 
70 %, three trials have been carried out from different 
initial solutions. In Fig. 8 we give for each trial the 
histogram of angular deviations between actual and 
computed striations, the ratio R and the projection on a 
Schmidt net (lower hemisphere) of the principal ot and (~3 
axes.  

For a percentage of 30 or 40 % (values lower than the 
actual percentage for the first tensor), the angular de- 
viations between actual striations and computed ones are 
small; however for the three different initial solutions 
(obtained from random choice), the optimization process 
leads to tensors which are quite remote one from each 
other (especially in the 30 % case) and the striated planes 
taken into account are different for each solution. Thus 
the final solution is not stable with respect to the initial 
one; in other words different initial choices result in 
different final solutions. Moreover in some cases, it is clear 
that some striations are not taken into account despite the 
fact that the angle between the observed striation and the 
computed one remains reasonably small. 

For percentage values of 60 and 70 % (values greater 

a) 
N N N 

S $ ,  S 

R= 0.38 R, 0.71 ~ =0.11 

c) 

T1 [ ]  T2 [ ]  T3 • 

10 N 

w E 
S 

S 
bl ~ o.r~ 

0 1 

Fig. 7. (a) Schmitt projection of principal directions of the three actual stress tensors (TI, T,, T3) with their R ratio (symbols x,  
+,  o as in Fig. 5. (b) Optimal tensor (principal direction and R ratio) computed using the whole set of data. (c) Histogram of 
residuals. To each residual, is associated a colour code (white, hatched and black) which specifies which set (TI, T2, T3) the 

corresponding data originates from. 
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Fig. 9. (a) Details of the three histograms obtained in trials A, B and C 
with a percentage value of 50% (cf. Fig. 8). Only the data accounted for in 
the computation are shown with a code which specifies from which set 
(T t, T2, Ts, cf. Fig. 7) they originate. (b) Histogram of residuals obtained 
when using the 19 data which are common to trials A, B and C. (c) 
Resulting tensor obtained from these 19 data characterized by its 
principal stress directions and R ratio (compare with the actual Tt 

tensor of Fig. 7a). 

Fig. 8. For 5 different pel"eentages of retained data (30, 40 to 70%) - -  
from top to bottom - -  three trials of the method labelled A, B and C are 
performed. On the left part, the principal directions ot ( x ), a3 (o) of 
computed tensors are displayed and, on the fight park the histograms of 
residuals for each trial are given together with the computed R ratio. The 
hatched area corresponds to those data of the set which are accounted 

for. 

than the actual largest one) the final solution is again 
observed to be unstable with respect to the initial one. The 
histogram of the angular deviations becomes flat with the 
maximum displaced toward greater deviations. 

In contrast with the previous results, for a value of 50 % 
(i.e. the actual value), the final solutions appear to be very 
stable for various initial solutions: the resulting tensors 
are very close to each other. Out of the 24 data chosen, 19 
remain the same for the three starting solutions (Fig. 9a); 
and it is verified that these 19 data are actually issued from 
the first set of data corresponding to tensor T1. If 
minimization is performed using only these 19 data, the 
resulting tensor is very close to the tensor Tx (Figs. 9b and 
c). For each of the 48 striated planes we have calculated 
the angular deviation between actual and computed 
striations; it appears then that data issued from the two 
other sets exhibit very small deviations. 

Therefore the percentage of measures which will be 
chosen for the minimization is the one which: (a) leads to 
stable solutions after the minimizations calculated for 
different random trials; (h) takes into account a maximum 
number of striations giving small deviation (a threshold of 
20 ° is generally adequate); and (c) gives histograms for 
which the maximum corresponds to the smallest differ- 
ences in angle. 

AN EXAMPLE OF PHASE SEPARATION WITH 
APPLICATION TO L A N G U E D O C  TECTONICS 

The example selected for analysis is a 150m long 
calcareous outcrop situated at Prades, north of 
Montpelfier (Htrault, France). The structural setting is 
given in Fig. 10. A detailed cross-section of the studied 
area is given in Fig. 11. The example was chosen because it 
shows brittle microstructures characteristic of the 
Languedoc (Arthaud & Mattauer 1969, Arthaud in press). 
The measurement of striations was carried out on 
decimetric- to metric-scale fault planes which cut 
relatively massive Berriasian limestones. Sixty-four 
striated planes have been selected in a manner to present a 
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Fig. 10. (a) Structural setting of the studied area during the Pyrenean phase. 1, Pyrenean axial zone; 2, main overthrust; 3, 
transverse fault; 4, fold axis; 5, compression direction. (b) Structural setting at the studied area during the Oligoeene. 1, 
Oligoeene basin with thickness under 1000 m; 2, Oligoeene basin with thickness in excess of 1000 m; 3, extension direction; 4, 

main normal fault (after Arthaud et al. 1977). The studied outcrop is located at Prades. 
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Fig. 11. Schematic cross-section of the outcrop at Prades (north of MontpeUier. 1, main normal fault zone (Valanginian); 2, 
zone of measurement (Berriasian); 3, Berriasian slumps; 4, dissolution cleavage; IF, reverse fault; NF, normal fault; SSF, 

strike-slip fault. 

maximum spatial dispersion. The dip of the stratification 
varies along the outcrop from 25 to 40 ° towards the NW. 
This tilting is attributed by Arthaud (in press) to an 
Ohgocene extensional phase, the last important tectonic 
phase in Languedoc. The position before the tilting has 
therefore been recalculated for each striated fault plane. 
The data list is given in Table 2. 

Treatment of the measurements 

The treatment of the measurements by the method 
previously described leads to four tensors which are 
presented in the Table 3 in a chronological order 
suggested by comparison with other work in the 
Languedoc area which is discussed later. 
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Table 2. Field and rotated data from the calcareous outcrop of Prades, north of Montpellier. For each data set are given the bedding 
characteristics, the actual field measurements, and the data characteristics obtained through a rotation which returns the bedding to horizontal 

No. Bedding Fault fiddmcasurements Rotated faultmeasurements 

St PI Q St PI Q P RD Az SM St PI Q Az SM 

1 38 29 W 44 32 N 24 E S 86.04 4.27 N 19.23 R 
2 38 29 W 58 39 N 36 E S 94.87 14.89 N 19.16 R 
3 38 29 W 70 31 N 28 S 135.01 15.96 E 18.60 R 
4 38 29 W 58 56 N 18 E S 72.25 29.91 N 39.10 R 
5 38 29 W 52 42 N 42 S 75.95 15.26 N 37.15 R 
5 bis 38 29 W 52 42 N 14 S 75.95 15.26 N 3.64 S 
5 ter 38 29 W 52 42 N 156 N 75.95 15.26 N 149.43 N 
6 38 29 W 146 40 W 11 N 110.08 39.98 S 31.00 N 
7 38 29 W 48 53 N 10 E S 57.29 24.82 N 37.55 S 
8 38 29 W 156 74 W 37 N D 145.10 62.62 W 141.32 D 
9 38 29 W 124 86 W 28 N D 122.56 88.44 S 122.59 D 

10 38 29 W 120 40 S 172 N 92.76 51.20 S 14.05 N 
11 38 29 W 46 37 S 140 N 43.27 65.82 E 150.95 N 
12 38 29 W 80 31 N 62 S 141.20 20.73 E 54.22 R 
13 38 29 W 72 54 N 36 E S 94.31 32.94 N 32.36 R 
14 38 29 W 120 47 S 152 N 97.91 56.83 S 165.85 N 
15 38 29 W 88 49 N 33 E R 117.59 36.00 N 49.25 R 
16 38 29 W 74 35 N 48 S 126.52 19.71 N 38.18 R 
17 38 29 W 16 25 W 58 R 96.59 10.69 S 63.61 R 
18 42 20 W 153 40 W 50 R 127.66 37.00 S 64.51 R 
18b is 42 20 W 132 44 S 57 S N 112.50 47.47 S 14.61 N 
19 42 20 W 178 36 W 70 R 148.46 25.20 W 79.50 R 
20 42 20 W 11 31 W 42 R 156.64 16.97 W 48.04 R 
21 71 29 N 176 67 W 73 S N 162.22 62.79 W 102.19 N 
22 71 29 N 10 53 W 90 N 164.84 44.43 W 121.67 N 
23 71 29 N 130 3 W 134 S 76.06 30.64 S 130.72 N 
24 71 29 N 168 28 W 2 R 121.95 36.87 S 6.42 R 
25 71 29 N 36 38 W 36 S R 170.49 20.98 W 77.24 R 
26 71 29 N 138 86 W 33 N D 138.80 82.65 E 139.60 D 
27 71 29 N 176 35 W 30 S R 135.24 37.96 W 32.11 R 
28 60 30 N 62 22 W 8 R 54.64 8.05 S 6.05 N 
29 60 30 N 145 37 W 59 W R 13.43 48.29 S 101.83 S 
30 60 30 N 148 57 W 54 S R 130.45 62.80 S 36.47 R 
31 60 30 N 162 58 W 48 N D 142.29 56.83 W 135.52 D 
32 60 45 N 68 25 N 26 R 50.32 20.48 S 23.38 D 
33 60 45 N 154 60 W 55 S R 130.21 66.65 S 74.65 R 
34 60 45 N 74 34 N 40 R 26.26 14.10 E 31.58 S 
35 60 45 N 126 64 S 74 E R 115.30 87.05 S 108.80 S 
36 60 45 N 58 66 W 42 E R 54.91 21.06 N 18.75 S 
37 60 45 N 60 50 N 65 E R 60.00 5.00 N 175.08 R 
38 60 45 N 64 50 N 65 W R 91.90 5.80 N 127.57 R 
39 60 45 N 36 60 W 44 N R 00.30 24.08 W 1.06 S 
40 60 45 N 0 80 W 56 S R 164.80 61.90 W 95.26 R 
41 60 45 N 120 57 S 9 0  R 106.82 84,92 S 100.33 S 
41 his 60 45 N 120 57 S 18 E R 106.82 84,92 S 114.28 D 
42 60 45 N 20 34 W 10 S D 111.75 27,24 S 40.44 R 
43 60 45 N 53 45 W 25 N S 147.52 4.94 W 29.96 N 
44 60 45 N 121 90 26 W D 128.60 69.95 N 123.29 D 
45 60 45 N 58 57 N 81 W R 51.97 12.10 N 139.68 R 
46 60 45 N 172 70 W 27 N D 150.46 60.61 W 161.57 D 
47 60 45 N 50 90 25 E S 46.00 45.86 N 35.32 S 
48 60 45 N 70 85 N 25 E S 75,31 40.94 N 46.73 S 
49 64 28 N 144 20 W 170 R 98.31 36.70 S 173.61 R 
50 64 28 N 156 36 W 45 W R 122.38 43.62 S 120.82 S 
51 64 28 N 150 21 W 175 R 101.83 35.65 S 179.59 R 
52 64 28 N 42 74 N 25 W S 35.29 48.56 W 63.11 S 
53 64 28 N 64 34 N 12 R 64.00 6.00 W 7.20 R 
54 64 28 N 68 68 N 6 E S 69.76 40.09 N 62.92 S 
55 64 28 N 157 40 W 65 W R 126.80 46.20 S 109.30 S 
56 70 29 N 62 25 W 16 W R 108.72 5.40 S 78.97 S 
57 58 24 N 176 80 E 25 N D 177.55 88.31 W 177,44 D 
58 77 36 N 42 33 E 70 E N 56.91 65.40 S 81,90 D 
59 77 36 N 72 35 N 43 E R 145.97 3.07 W 29.90 N 
60 77 36 N 140 78 W 17 N S 138.08 84.67 E 136.68 S 
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Fable 3. Characteristics of the 4 tensors obtained at the outcrop of Prades (north of Montpellier). (s etc.) indicates the confidence domain at a 
confidence level of 95~o 

0.z 0"2 0"3 s.d. n 
phase of number 

number Az. Dip. Az. Dip. Az. Dip. R residuals of data 

1 (*) (*) (*) (*) 307 ° (5) 7 ° (5) 0.92 (0.09) 7.6 12 
2 204 ° (19) 4 ° (6) 294 ° (17) 5 ° (8) (**) 84 ° (13) 0.18 (0.09) 6.7 26 
3 288 ° (13) I ° (15) 198 ° (12) 3 ° (16) (**) 87 ° (15) 0.72 (0.13) 5.2 12 
4 ( ' * )  83 ° (13) 15 ° (9) 7 ° (10) 285 ° (1) 3 ° (12) 0.40 (0.11) 6.9 13 

* Indicates nearly asymmetrical tensors (R -- 0 or  R -~ 1). In these cases only the characteristics of the revolution axis are significant. 
** Indicates a nearly vertical direction ; in this case the corresponding azimuth has no significance. 

From the sixty-four studied faults, only one does not 
correspond to any of the calculated tensors. In the field, 
this fault forms in association with another striated fault 
plane a dihedron, and probably represents a parasitic 
r~ovement imposed by the geometry. Therefore it 
cannot be accounted for using our previous assumptions. 
Figure 12 summarizes the results. 
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R - 0.18 .* 0 . 0 9  
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R - 0.40_* 0.'11 

S 

Fig. 12. Display of the principal directions (and confidence domain) 
and R ratios of the four tensors labelled 1-4 deduced from the data (cf. 

Table 3). 

Comparison with other microstructures 

In order to control our results, the distribution of 
stylolites and tension gashes has been studied. Stylolites 
are surfaces of preferential dissolution presenting 
irregularities or stylolitic peaks. Previous studies have 
shown that the peaks have an average direction parallel to 
the principal stress direction, or1, responsible for their 
formation. Arthaud (1969) described in the studied 
outcrop 96 stylolitic peaks that he attributed to the major 
Pyrenean phase (Fig. 13a). His diagram is comparable 
with the diagram given here for the direction of the 
principal stress, ~1, of the second tensor (Fig. 12): the 
computed major stress axes ~t corresponds exactly to the 
maximum density of stylolitic peaks. Furthermore, the 
dispersion of the peak directions coincides with the 
fluctuations of the tensor about this average position (as 
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a ) S t y l o i i t e s  

Fig. 13. (a) Density diagram (Schmidt projection, lower hemisphere) of 
stylolitic peak directions. Vertical peaks are not displayed. (b) Density 

diagram of directions normal to tension gashes. 



64 A. ETCHECOPAR, G. MASSEUR and M. DAIGN1ERES 

explained in the section on monophased data). There are 
also stylolites with horizontal NE 110 ° peaks in agreement 
with tensor number 3. Finally, there are numerous 
stylolitic peaks perpendicular to the stratification 
corresponding to tensor number 4 (these peaks are not 
shown on Fig. 13a). 

It is well known that tension gashes appear on the 
average along planes perpendicular to the a3 direction. 
Thus we have made a systematic analysis of these 
microstructures. However, in the field, the true tension 
gashes are difficult to separate from calcite infillings along 
faults or joints between blocks. On the other hand the 
anisotropy due to stratification influences the position in 
space of the gashes. In the case described here we would 
expect to find a large number of horizontal gashes 
corresponding to tensors numbers 2 and 3 for which the 
minimum stresses, 0"3, are vertical. In fact such gashes are 
rare in the outcrop because they would be parallel to the 
beds which are less than 1 m thick. However, in a 
neighbouring quarry where the beds are thick, tension 
gashes parallel to the stratification are more numerous. 
Figure 13(b) shows that the maximum of the tension gash 
planes has an orientation N 30 ° E which may correspond 
to tensors numbers 1 or 4; there is no possibility of 
distinguishing between them. 

Relations with Languedoc tectonics 

Since Cretaceous time two important tectonic phases 
have affected the rocks in Languedoc: first a so-called 
Pyrenean compressive phase, N-S  to N 40 ° E of Eocene 
age; and secondly an Oligocene phase of extension in a N 
120 ° E direction. 

The Pyrenean phase (Fig. 10a) was responsible for the 
main tectonic structures of Languedoc. It produced 
thrusts, folds and important strike-slip faults all of which 
allow the average direction of compression to be 
determined as N 00-N 30 ° E. Perturbations exist locally, 
particularly in the neighbourhood of large faults. Tensors 
number 1 and 2 are attributed to this phase, both 
corresponding to a compression directed N 25°E. Tensor 
number 1 whose intermediate stress 0" 2 is vertical may be 
responsible for a bounding strike-slip fault and occurred 
before tensor number 2 whose minimum stress, a3, is 
vertical. This chronology is justified by the fact that 
conjugate strike-slip faults are tilted by a later folding 
throughout Languedoc. 

Locally, there are microstructures indicating a former 
E-W compression which we attribute to tensor number 3. 
The chronology of this phase with respect to the others is 
difficult to determine precisely. Arthaud (in press) 
proposed that this compression could correspond to an 
early Pyrenean phase. However, it is difficult to separate 
in time this episode from the N 20 ° E compression. An 
alternative explanation is that the microstructures cor- 
responding to this E-W compression resulted from a local 
secondary effect (stress deviation) of the N 20 ° E Pyrenean 
compression for boundary conditions which still remain 
to be determined. Rispoli (in press) shows that such 
perturbations exist around metric- to decametric-scale 

strike-slip faults. 
We attribute tensor number 4 to the Oligocene 

extensional phase which affected all of Languedoc and 
created numerous normal faults trending N 20-N 40 ° E of 
which the most important limit large basins of continental 
sediments (Fig. 10b). 

Conclusion 

The four tensors determined correspond to the 
observed microstructures and reciprocally there are no 
inexplicable microstructures at the scale of the outcrop. 
Moreover, three of the four tensors correspond to the 
three well known tectonic phases of Languedoc. 

CONCLUSIONS 

Using a few assumptions, it is possible to give a 
quantitative interpretation in terms of stresses from 
striations observed on fault planes. A crucial problem for 
this interpretation consists in the separation of tectonic 
phases and of related observations; an algorithm for 
solving the problem has been proposed. Applied on 
synthetic data as well as on actual field data, the algorithm 
was shown to yield fairly satisfactory results. Besides, 
confidence domains for the parameters of the stress tensor 
can be determined for each phase. 

The proposed method does not require information 
other than the observed striations: an initial solution is 
automatically provided using a random exploration of the 
bounded parameter set. However, it is also possible to 
take into account various geological constraints such as 
information deduced from stylolites, tension gashes or 
observations arising from general studies. In this situation 
one or several principal directions of the stress tensor may 
be inferred. 

The method has already proved its value for studying 
various geological problems (Burg & Etchecopar 1979, 
Santouil 1980). In a platform area which has 
undergone only slight deformation, it is possible to 
determine several tectonic phases using indirect 
observations. Use of the method in slightly deformed 
areas external to orogenic belts would make it possible to 
control their geodynamical interpretation. 
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A P P E N D I X  

There are at least four explanations for the presence of angular 
deviations between observed and computed striations: 

(a) the data are not perfect (it is difficult to measure with an error of 
only a few degrees the orientations of 'fault planes' and striations); 

(b) local fluctuations of the stress tensor can be associated with faults 
(Chinnery 1966); 

(c) when two or more tectonic phases have followed each other, small 

strains caused by one phase can change in a heterogeneous way the 
orientations of structures related to older phases ; and 

(d) when the fracture surface is of an elongated shape it is possible that 
the tangential force applied on the plane and the resulting striations are 
not exactly parallel to each other. Kassir & Sih (1967) have obtained an 
approximate solution for the strain around an elliptical surface of 
discontinuity in an elastic medium subjected to a uniform stress field : if 
the crack is an ellipse (Fig. 14) with centre 0, major and minor semiaxes a 
and b, parallel to Ox and Oy, the angles ~k = (Ox, s) and co = (Ox, t), 
where s and t are calculated at 0, are binded by: H .  tan g, = tan co, where 

(k 2 + vk")E(k)  - vk'J K(k) 
H =  

(k 2 - v)E(k) + vk'JK(k) 

with 

a '  - b '  b 
k 2= - - ,  k' = - ,  

a 2 a 

v being Poisson's ratio of the medium, K( ) and E( ) being respectively 
the complete elliptical integral of the first and second kind. Table 4 shows 
the discrepancy between s and t for four values of the ratio k' = a/b oftbe 
fracture; it can be bigger than 8 ° for a fault with an elongation coefficient 
of ten. As fault planes are commonly elongated this can play an 
important part in the observed residuals. 

x 

~y 

B 
| X 

Fig. 14. Model of an elliptical crack in the oxy plane with major and minor 
axes along ox and oy, s is unit vector of the displacement at point o and t 
the unit vector of the tangential force (resolved shear stress) 

corresponding to the regional stress, that is far from the crack. 

Table 4. Value of the angular difference ~o-~, between 
the striation and resolved shear stress on fault plane as 

a function of co and k' (see text) 

1 2 5 10 

0 o 0 o 0 o 0 o 0 o 
20 ° 0 ° 1.1 ° 3.9 ° 4.9 ° 
45 ° 0 ° 1.7 ° 6.6 ° 8.5 ° 
70 ° 0 ° 1.1 ° 4.6 ° 6.2 ° 
~ o  0 o 0 o 0 o 0 o 


