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Abstract—A method is proposed to compute some characteristics of a possibie stress tensor related to striations
measured in a given faulted area. If several tectonic phases are responsible for the striations the method separates
and determines the successive stress tensors. The iterative algorithm consists of alternatively: (a) sorting the data
attributed to a tectonic phase ; and (b) computing the characteristics of the stress tensor of this phase. The method is

tested using an application to synthetic and actual data.

INTRODUCTION

RECENT studies (e.g. Molnar & Tapponnier 1975) have
shown that during orogenesis, brittle deformation is
important and affects much larger areas than plastic
deformation which is located in the axial zones of
orogenic belts. Furthermore, such studies have shown
that the analysis of the stress field is the best way to
integrate strains of different intensities and natures within
the same model. Therefore, in order to control dynamic
models, it is of primary importance to determine the local
stress state for a given region. In the axial zone of orogenic
belts, plastic deformation prevails and depends on too
many parameters (pressure, temperature, external ro-
tations, primary anisotropies ztc.) to be related simply to
the stresses. By contrast, in areas where brittle defor-
mation is prevalent, the deformation is localized along
major faults bordering areas where deformation is less
important and may be used for the determination of the
stress tensors (Mattauer & Mercier 1980). The aim of this
contribution is to show that we can determine some
elements of one or several successive stress states, using
striations measured on fault planes within these slightly
deformed areas.

Using the approach of Bott (1959) and Price (1966),
several authors (e.g. Carey & Brunier 1974, Carey 1976,
Carey 1979, Armijo & Cisternas 1978, Angelier & Goguel
1979, Angelier & Manousis 1980) have proposed quanti-
tative computer-aided methods for the interpretation of
various fault plane striations for a given area of faulting.
The basic assumptions used are that for a particular place,
a given tectonic event is characterized by one homo-
geneous stress tensor and that for a given phase, the
resulting movement (responsible for the striation) has the
same direction and sense as the resolved shear stress
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(physical limits arising from these assumptions will be
discussed later).

If the previous assumptions are satisfied, then the
deviatoric stress tensor of a tectonic event can be ob-
tained, from several independent data related to this
event, to within a multiplicative constant. In the case of
superimposed tectonic phases, the problem consists of
defining the relevant stress tensors and selecting the
corresponding striated fault planes. Methods for picking
out the data corresponding to two different tectonic
phases have been applied to synthetic and actual data
(Armijo & Cisternas 1978, Carey 1979, Etchecopar et al.
1980, Angelier & Manousis 1980).

The aim of this work is to present a general method for
reducing microtectonic observations in a faulted area.
After giving an example of a striated plane, we first
develop an inverse technique for computing one stress
tensor and apply this technique to a set of data where
synchronous movement is insured. We then describe an
iterative method applicable to multiphase tectonics where
the sorting of the data and the computation of the stress
tensors are performed alternatively. When applied to
synthetic and actual data, this method is shown to
separate successfully several superimposed tectonic
phases.

MEASUREMENTS

A typical example of a striated fault plane is shown in
Fig. 1. For each plane bearing a striation we define two
unit vectors n and s; n is the unit normal which has an
upward vertical component, and s is the unit vector
parallel to the striation and which is orientated parallel to
the movement of the upper block with respect to a lower
one.
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INVERSE PROBLEM APPLIED TO
MONOPHASED DATA

Basic assumptions and statement of the problem

Necessary conditions for obtaining quantitative infor-
mation about the stress tensor using striation data have
been given by Arthaud (1969) and Carey (1976). They are
summarized as follows. (a) In the considered area the state
of stress is homogeneous. In particular the presence of
faults does not modify the stress tensor, which can be
verified only if the displacements are small compared with
fault plane dimensions. (b) The medium is isotropic and
the tangential force applied on a given plane results in a
tangential displacement in the direction and orientation
of this force. (c) No distributed torque exists in the
medium, that is the stress tensor is a symmetric one. Using
these assumptions, the stress state which is responsible for
the observed displacement is characterized, in the re-
ferential frame of its principal directions, by a diagonal

tensor:
cp 0 O
T= ( 0 o, O )
0 0 o,

when ¢, 2 0, 2 03.

(1)

This tensor T can be separated into an isotropic
pressure part P and a deviatoric one D. The referential of
the principal axes is described by its three Euler’s angles
(¢, 8 and ¢, see Fig. 2) with respect to geographical axes
ox, y and z(x, y and z are respectively north horizontal,
east horizontal, and downward vertical); thus six
quantities ¢, 65, 03, ¥, 0 and ¢ are necessary to define a
tensor T.

The resulting force on a plane with unit normalnhasa
tangential component f; given by (Fig. 3):

fi=Tn—(n-T -n)n 2)

North
x
b__--"
e d U1
0 &% » y East
0
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Fig. 2. Euler’s angles (i, 6 and ¢) describing the three rotations which
specify the frame of principal stress directions (o,, a,, and ¢,) with
respect to the geographical reference frame (ox, y and z).
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corresponding to a unit vector:

_f
]

Only the deviatoric part D of T contributes to this
tangential force since the pressure part P results in a force
which is normal to the plane. Moreover the direction and
orientation of f; (i.e. of t) remain unchanged when T is
multiplied by an arbitrary positive constant. Therefore
the unit vector t in the direction of the tangential force
depends only on four parameters which give (a) the
principal directions, i.e. the three Euler’s angles y, # and ¢,
and (b) the relative ratio of principal stresses which can be
characterized by:

t (2a)

03 — 03

R= 3)

0y — 03
with 0 < R < 1. These four parameters do not define a
unique tensor but a set of stress tensors characterized by,
for example, one normalized deviatoric tensor D, (with
g, — g3 = 1); every tensor T being of the form

T=/Dg + pl @)

(with 2 > 0 and I the unit tensor) belongs to this set and
causes, on every plane surface, a displacement with the
same unit vector t.

As a resuit of this ambiguity, striated planes can only be
expected to give such a normalized deviatoric tensor Dy,
In order to obtain the actual tensor, further assumptions
must be made for estimates of 2 and g (lithostatic pressure,
experimental fracture tests, etc.).

Now consider N fault planes with unit normals n, (i
= 1,...N) on which striations with unit vectors s, (i
= 1,...N) assumed to correspond to the same tectonic
stress tensor have been measured. The inverse problem
consists of determining the parameters (, 6, ¢, R) of the
tensor D, -— and via equation (4) of the corresponding set
of tensors T — which explains the data, i.e. such that for
each i, the unit vector t, of the tangential force corresponds
to the unit vector s; of the observed striation (Fig. 3). If we
define the vector function £ (¥, 8, ¢, R) which, for a given
n;, maps (¥, 6, ¢, R) into t;: then

T-n,—(n, T n)n
| T-n— (0 -T-n)n |

The parameters y, 6, ¢ and R to be obtained are those
which give the ‘best agreement’ between t; and s,.

ti = ‘?i(.p’B’qb’R) =

()

Previous methods

At least four striations on independent fault planes are
in principal necessary to derive the four parameters y, 6, ¢
and R. For N > 4 the problem is in general overcon-
strained and, because of various error causes, it becomes
impossible to verify s; = t, for each fault.

Carey & Brunier (1974) and Carey (1976) define a
vector u;:

(6)

w=sxn



Fig. 1. An example of a striation with an orientation (s) indicated by the arrow.
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Fig. 3. Block-diagram iljustrating a fault plane with normaln on which a
pressure force fis exerted corresponding to a resolved shear stress f; with
unit vector t.

which belongs to the plane and is perpendicular to the
observed striation. The parameters of T which are
calculated by this method are those which give a minimum
of

N
Y ‘1)
i=1

Angelier & Goguel (1979) use a least square minimi-
zation of the components of calculated tangential stresses
perpendicular to the measured striations, that is they
search the parameters of T which minimize

N
§= 21 [(m;xs;) (T ‘)] )

They obtain a mean stress tensor without iteration, but
this method cannot be applied if more than one phase is
involved in the data.

Armijo & Cisternas (1978) discussed the origin of the
angular deviations between the observed striations s; and
the theoretical ones; these deviations arise from (a)
measurements errors on s; and n;, and (b) local fluc-
tuations of the stress tensor. A stochastic approach, using
an a priori estimate of the covariance matrix of the ‘model’
(ie., ¥, 8, ¢ and R) is then used in order to derive the
parameters. However this estimate is largely arbitrary;
besides, in the proposed method, the three components of
s, are used as independent data whereas obviously t; has
only one degree of freedom (since t,-m; = Oand || t,| = 1)
and each striation only corresponds to one scalar datum.

The algorithm developed in this paper is somewhat
different from the ones just described; it is also concerned
with several improvements concerning the analysis of the
angular deviations and also the separation of data
corresponding to several different tectonic phases (this
last topic is developed in a later paragraph).

Description of the algorithm

The angular deviations between observed and com-
puted striations are assumed to be due to some random
noise process arising from measurement and/or from
some physical process not accounted for by the model (e.g.
local fluctuations of the stress tensor). Therefore, in
contrast with the work of Armijo & Cisternas (1978) no
further assumption about the model fluctuations needs to
be made.

For a given set of N observed striations s; (i = 1,... N)
on fault planes with normal n; (i = 1,... N), the inverse

SG3:1 0

problem is stated as foliows : find the four parameters y, 6,
¢ and R of the stress tensor such that the variance of
angular deviations defined by:
N
Q=Y <s, Z,(4,6,0,R))* ®)
i=1
is minimum (the bracket { > denotes the angle between

the two vectors). The algorithm is composed of three
steps.

Step 1: first estimate. As often occurs in non-linear
optimization processes, the choice of an initial parameter
set is of primary importance; a wrong choice of initial
values may lead to a secondary minimum and therefore to
meaningless solutions. The initial choice may be guided
by geological arguments, for example using results ob-
tained from data collected at a small distance from the
studied area, or using microtéctonic structures other than
the striated planes (e.g. tension gashes and stylolite peaks
allow us to choose o3 and ¢, principal axes respectively of
the initial solution); otherwise it is necessary to proceed
by trials in the whole range of variations of parameters (y,
0, ¢ and R) that is

[0,7] x [0, 7] x [0,n] x [0,1].

An efficient way of performing such trials consists in using
randomly chosen parameters with a uniform probability
density over their variation range. Since their variation
interval is bounded in IR, a relatively small number of
such trials (50-100) is generally sufficient to obtain an
initial solution quite close to the final one, insuring a rapid
convergence of the following iterative processes.

Step 2: optimization process. The parameters y, 6, ¢ and
R obtained in the former step and corresponding to the
smallest variance are used as an initial guess for a fast non-
linear optimizing procedure using a technique proposed
by Rosenbrock (1960) which proceeds by steps in the
parameter space, followed by a success or failure test.
Step 3: refinement of the solution, analysis of the angular
deviations. The previous step provides a solution (i, 6o,
¢o0. Ro) close to the optimum; it is now possible to
linearize around this solution in order to obtain a more
refined one. Variance Q, given by (8), is approached by a
quadratic form Q' such that:

N N
Q=Q' = Z K&, + jz aiijj)z ©)
i=1 =1

(Ax,, Ax,, Ax,, Ax,) being the increment vector (Y — Yo,
6 — 6, ¢ — ¢o, R — Ro) and ayy, a;,, a;3, a;4 the partial
derivatives of (.%,, s,> with respect to ¥, 6, ¢ and R. From
classical least square analysis (Linnik 1963) the minimum
of Q' is obtained for:

Ax = (A'A)" 1A'y (10)

y being the n-component vector of angular deviations
(Zi»s;y and A the matrix (a;;). This process can be
iterated until a stable solution is obtained. Note that,
when (A’A) is ill-conditioned, the classical regularizing
technique (Marquardt 1970) is to replace (10) by:

Ax = (A'A + «2I)" 1A’ (11)
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{(with I the unit matrix and « an arbitrary real parameter)
which is just identical to the expression used by Armijo &
Cisternas (1978).

Using the linearized expression (9), the classical least
square theory (Linnik 1963, Hamilton 1964) provides
further information about data errors and model un-
certainty. To within the linear approximations used, the
angular deviations between the observed and theoretical
striations have a standard deviation given by:

o)

(Q min is the minimum of Q). If (o, 6o, o, Ro) denotes the
optimal model, the actual model belongs, with a con-
fidence level of (1 — a) 100 %, to that subset of the (, 8, ¢,
R) space defined by

(12)

QW,0,¢,R) < Qmi,,(l - %F(N,N —-41- a)).
(13)
[F(vy,v,,p) is the F distribution with degrees of freedom
vy, v, ]. In the linear approximation which we will assume
valid here, the domain defined by (13) is a 4-D hyper-
ellipsoid with (o, 85, dg, Ry) as a centre; geometrical
properties of conjugate directions can then be used in
order to derive the max/min of any linear- or linearized-
function of ¥, 6, ¢ and R such as, for example, the azimuth
and dip of a principal direction.
Another important problem is to find, for each datum,
a satisfactory model which is also as close as possible to
the optimal one, Ty(¥o, B¢, ¢o, Ro). Define a ‘distance’
between two tensors T, and T by:

F(T, To) = (1 = Ro)* (08,0,)?
2
+ RiCo% 05>t + G) (R-Ro? (14)

(a?,0,) being the angle between the ith principal axis of
tensors T, and T (this formula accounts for possible
isotropy of the stress tensor).

The problem is to find T, a tensor such that: {t,s;>
= 0, the ‘distance’ defined by (14) being a minimum. The
solution using a Lagrange multiplier is straightforward.
This last analysis may appear to be inconsistent with
previous assumptions about the angular deviations; in
fact, as will be seen later, it can give information upon the
amplitude of possible fluctuations with time and space of
the stress tensor.

Case study : synsedimentary tectonics in a Permian basin

As an example of the determination of a stress tensor in
the case of a single deformation phase, we have treated a
set of 38 striated planes measured in the Saxonian of the
Permian Basin of Lodéve (Hérault, France). The data list
is given in Table 1. The aspect of these striations (which
can be described as ‘soft’ striations) shows clearly that
they developed before the sediment was indurated. The
Permian sequence comprises of flood-plain sediments
deposited in a half-graben limited to the south by a large

E-W fault, probably active during sedimentation (Ar-
thaud et al. 1977). The stratification dips 20° SE. A
horizontal Triassic succession unconformably overlies the
Permian (Fig. 4).

Because the material was not completely indurated
when the faulting occurred, we expected that the tensor
would have been an extensional tensor with the principal
axis ¢, normal to the bedding. However the tensor T,
obtained from the data (Fig. 5a) has o, axes verticaland a
very small R ratio (R = 0.09). In order to control this
result we have, in a second trial, imposed a tensor T,
deduced from T, by a rotation pulling the principal stress
g, in a position normal to the bedding (Fig. 5b). In this
case the angular deviations between actual and computed
striations are clearly larger than for tensor T,. Starting
from T, we have carried out the minimization step and we
have obtained a tensor identical to T,. This result
demonstrates that the tilting of the bedding predates the
induration of the sediments. It also shows that in a simple
case like this one, the tensor axes can be defined with fairly
good accuracy. '

In Fig. 6(a) the confidence domains at a confidence level
of 95 9 for each of the principal axes are shown. The one
for the o, axes (deviation less than 3-5°) is very small
which insures that the tilting was necessarily prior to the
tectonic event. The ones for the ¢, and ¢, axes are greater
and elongated in the horizontal direction; explained by
the very low value of the ratio R. For the same confidence
level the ratio R has a confidence range between 0.03 and
0.15 which indicates that the direction of the o5 axis is
significantly determined; in fact the direction of o, is
normal to the major normal fault limiting the basin.

For each striated plane we have calculated, as explained
in the preceding paragraph, a satisfactory tensor as close
as possible to the final solution and displayed as the
direction of ¢, on Fig. 6(b). The deviations with respect to
the average computed direction are very small (a few
degrees); they may arise from several causes, one of which
is discussed in the Appendix (it is shown that, for an elastic
medium with an elliptic crack representing a fault, the
assumption that the tangential force arising from the
regional stress state has to be parallel to the displacements
may be erroneous by some degrees).

INVERSE PROBLEM APPLIED TO
POLYPHASED DATA

Statement of the problem

In general, rocks in a faulted area have been affected by
several successive tectonics events corresponding to sev-
eral stress tensors. In this case the inverse problem is to
obtain the stress tensors and also to sort out from the
observed data, the striations which are associated with
each tectonic stress tensor. Generally, only a few tectonic
phases have affected a given area.

In order to define a tectonic phase (i.e. a stress tensor)
and the corresponding striations, the following idea is
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Table 1. Field data from the Permian basin of Lodéve. Each set of data is composed of a

fault plane measurement (St = strike; Pl = Plunge; Q = quadrant) and striation

measurement (P = pitch; RD = reference direction for pitch measurement or Az
= azimuth when the fault plane is nearly horizontal; SM = sense of movement)

No. St Pi Q P RD Az SM
1 150 85 E 55 N N
2 85 58 N 90 N
3 97 75 N 90 N
4 120 70 N 75 w N
5 125 70 N 80 w N
6 90 85 N 85 E N
7 5 75 E 90 N
8 110 65 N 85 w N
9 100 60 N 90 N

10 100 70 S 90 N
11 85 70 S 90 N
12 120 62 S 09 N
13 100 55 N 90 N
14 129 45 S 35 N
15 122 70 N 75 w N
16 125 70 N 75 w N
17 125 46 S 25 N
18 84 75 S 82 w N
19 120 80 N 70 w N
20 2 72 E 75 N N
21 106 74 S 90 N
22 136 65 E 70 N N
23 10 86 w 85 N N
24 37 85 w 70 N N
25 20 70 w 90 N
26 0 85 E 85 S N
27 85 55 N 75 E N
28 130 75 N 80 w N
29 15 86 w 80 N N
30 30 38 w 114 N
31 95 60 S 75 w N
32 105 86 N 60 w N
33 105 75 N 90 : N
34 130 75 N 80 w N
35 110 80 N 70 w N
36 90 48 N 80 w N
37 100 49 N 85 E N
38 20 45 W 95 N

3 -

Fig. 4. Cross section of the Permian basin of Lodéve (Hérault, France). 1, basement ; 2, Stéphanian ; 3, Autunian ; 4, Saxonian ; 5,
Trias; 6, post-Triassic series; 7, major normal fault; 8, Triassic unconformity (after Arthaud et al. 1977).
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Fig. 5. (a) Schmidt projection (lower hemisphere) of principal stress tensor directions obtained using the method described. The
dotted arc corresponds to the bedding. In the histogram of residuals between observed and computed striations the horizontal
axis is scaled in radians. (b) Schmidt projection of principal direction:s of an assumed stress tensor, imposed to be parallel (o,
and o) and perpendicular (a,) to the bedding. Histogram shows resulting residuals between observed and computed striations.

W —1

s b

Fig. 6. (a) Schmidt projection of principal stress directions with their

confidence domain (at 90 % confidence level) displayed by hatched area

for 6, (%), o; (+) and a5 (o) principal stress directions. (b) Enlarged

view of the central part of the previous Schmidt projection. Each cross

(+) corresponds to. the o, direction of a tensor which (i) perfectly

explains one datum, and (ii) is as close as possible to the optimal solution
given above.

developed ; if n data (n < N) are due to the same tectonic
phase, the variance of angular deviations is expected to be
smaller than if the n data correspond to different phases.
Since the number of phases is not known and since no a
priori information exists about the correspondence be-
tween striations and tectonic phases, the algorithm de-
veloped below, needs to be tested seriously in order to
trust the results obtained.

Description of the algorithm

This is only a modification of the method used in the
situation of monophased data.

Step 1: a great number of tensors (100 or more) is tried,
using randomly chosen parameters (, 8, ¢, R); for each of
these tensors one calculates for each of the N fault planes
the associated theoretical striation direction; the n < N
fault planes (for the choice of n see the next paragraph)
which give the n smallest angles between the theoretical
and actual striations are selected; then the associated
quadratic sum S of these n angular deviations is calcu-
lated. Among all these tensors, the one with the smallest
value of S, T,, is kept.

Step 2: using as an initial guess the parameters (¢, 04, ¢o,
R,) of T obtained by step 1 and as an initial selection the n
fault planes giving the smallest deviations, modifications
of the parameters are performed (as described in the
preceding paragraph) in order to minimize the quadratic
sum S of the angular deviations for these n selected data.
Then a new selection of observed striations is initiated:
some data not consistent with the new tensor can
eventually be replaced by others not used during the
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previous stage and a new optimizing procedure is iterated.
This method of alternating optimization and selection
was found to converge quickly if, in the initial guess, a
broad majority of the data belongs to the same tectonic
phase.

Step 3: as for monophased data, it leads to an improved
solution with its confidence domain.

The data which are not explained by the computed
tensor are used to derive another tensor corresponding to
some other phase, the procedure starting from step 1.
Eventually, tectonic phases for which confidence domains
overlap can be regrouped.

An artificial example with emphasis on the choice of the
percentage n/N

A critical point of this method is concerned with the a
priori choice of the number n of data (or corresponding
percentage n/N) on which the minimization has to be
carried out. In this section we show on a synthetic
example that it is possible to determine an optimum value
of n by using several criteria.

In order to provide a synthetic example, three sets of
data from several regions have been mixed together; each
set corresponds to a particular tensor already well de-
termined. Twenty-four data out of 48 (i.e. 50%) cor-
respond to a first tensor T,; and 11 and 13 data
respectively correspond to the second and the third
tensors, T, and T;. The three tensors T,, T, and T; are
shown on Fig. 7(a).

When using all data, as for the monophased example,

the obtained tensor (Fig. 7b) is the same for every random
choice of the initial solution; it is a compromise between
the three actual tensors shown on Fig. 7(a), and the
histogram of associated angular deviations is flat (Fig. 7¢).
Moreover, for all the angular deviations (even the smal-
lest), data belonging to each of the three tensors T,, T,
and T are mixed together. Therefore if selection of data is
not performed the solution obtained is without
significance.

For each of the following percentages : 30, 40, 50, 60 and
709, three trials have been carried out from different
initial solutions. In Fig. 8 we give for each trial the
histogram of angular deviations between actual and
computed striations, the ratio R and the projection on a
Schmidt net (lower hemisphere) of the principal ¢, and o,
axes.

For a percentage of 30 or 409 (values lower than the
actual percentage for the first tensor), the angular de-
viations between actual striations and computed ones are
small; however for the three different initial solutions
(obtained from random choice), the optimization process
leads to tensors which are quite remote one from each
other (especially in the 309 case) and the striated planes
taken into account are different for each solution. Thus
the final solution is not stable with respect to the initial
one; in other words different initial choices result in
different final solutions. Moreover in some cases, it is clear
that some striations are not taken into account despite the
fact that the angle between the observed striation and the
computed one remains reasonably small.

For percentage values of 60 and 709 (values greater

102020,

R:0.38 R:0.71
T [ T2

R:0M
= m
N
w €
-3
i b) R oS54

JEE
T
1

Fig. 7. (a) Schmitt projection of principal directions of the three actual stress tensors (T,, T,, T;) with their R ratio (symbols x,

+,0 as in Fig. 5. (b) Optimal tensor (principal direction and R ratio) computed using the whole set of data. (c) Histogram of

residuals. To each residual, is associated a colour code (white, hatched and black) which specifies which set (T,, T,, T,) the
corresponding data originates from.
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A B C

0.29

N R=0.02 0.81

30%
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02 0.2
40%
50%
0.80 0N
60%
. rd.
0.2 0.2
100 0.80
70%
rd
0.2 0.2

Fig. 8. For 5 different percentages of retained data (30, 40 to 70%,) —

from top to bottom — three trials of the method labelled A, B and C are

performed. On the left part, the principal directions ¢, { x), 3 (0) of

computed tensors are displayed and, on the right part, the histograms of

residuals for each trial are given together with the computed R ratio. The

hatched area corresponds to those data of the set which are accounted
for.

than the actual largest one) the final solution is again
observed to be unstable with respect to the initial one. The
histogram of the angular deviations becomes flat with the
maximum displaced toward greater deviations.

In contrast with the previous results, for a value of 509/
(i.e. the actual value), the final solutions appear to be very
stable for various initial solutions: the resulting tensors
are very close to each other. Out of the 24 data chosen, 19
remain the same for the three starting solutions (Fig. 9a);
and itis verified that these 19 data are actually issued from
the first set of data corresponding to tensor T,. If
minimization is performed using only these 19 data, the
resulting tensor is very close to the tensor T, (Figs. 9b and
c). For each of the 48 striated planes we have calculated
the angular deviation between actual and computed
striations; it appears then that data issued from the two
other sets exhibit very small deviations.

10 4 A

10+
0 04 ~

? 0 04
b)
rd
0 04
N
10 c
w E
rd
0 04 s
(o4 R:=043
a) )

Fig. 9. (a) Details of the three histograms obtained in trials A, B and C
with a percentage value of 50% (cf. Fig. 8). Only the data accounted for in
the computation are shown with a code which specifies from which set
(T,, T;, T5,cf. Fig. 7) they originate. (b) Histogram of residuals obtained
when using the 19 data which are common to trials A, B and C. (c)
Resulting tensor obtained from these 19 data characterized by its
principal stress directions and R ratio (compare with the actual T,
tensor of Fig. 7a).

Therefore the percentage of measures which will be
chosen for the minimization is the one which: (a) leads to
stable solutions after the minimizations calculated for
different random trials ; (b) takes into account a maximum
number of striations giving small deviation (a threshold of
20° is generally adequate); and (c) gives histograms for
which the maximum corresponds to the smallest differ-
ences in angle.

AN EXAMPLE OF PHASE SEPARATION WITH
APPLICATION TO LANGUEDOC TECTONICS

The example selected for analysis is a 150 m long
calcareous outcrop situated at Prades, north of
Montpellier (Hérault, France). The structural setting is
given in Fig. 10. A detailed cross-section of the studied
area is given in Fig. 11. The example was chosen because it
shows brittle microstructures characteristic of the
Languedoc (Arthaud & Mattauer 1969, Arthaud in press).
The measurement of striations was carried out on
decimetric- to metric-scale fault planes which cut
relatively massive Berriasian limestones. Sixty-four
striated planes have been selected in a manner to presenta
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Fig. 10. (2) Structural setting of the studied area during the Pyrenean phase. 1, Pyrenean axial zone; 2, main overthrust; 3,

transverse fault; 4, fold axis; 5, compression direction. (b) Structural setting at the studied area during the Oligocene. 1,

Oligocene basin with thickness under 1000 m; 2, Oligocene basin with thickness in excess of 1000 m; 3, extension direction ; 4,
main normal fault (after Arthaud et al. 1977). The studied outcrop is located at Prades.

Fig. 11. Schematic cross-section of the outcrop at Prades (north of Montpellier. 1, main normal fault zone (Valanginian); 2,
zone of measurement (Berriasian); 3, Berriasian slumps; 4, dissolution cleavage; IF, reverse fault; NF, normal fault; SSF,
strike-slip fault.

maximum spatial dispersion. The dip of the stratification
varies along the outcrop from 25 to 40° towards the NW.
This tilting is attributed by Arthaud (in press) to an
Oligocene extensional phase, the last important tectonic
phase in Languedoc. The position before the tilting has
therefore been recalculated for each striated fault plane.
The data list is given in Table 2.

Treatment of the measurements

The treatment of the measurements by the method
previously described leads to four tensors which are
presented in the Table 3 in a chronological order
suggested by comparison with other work in the
Languedoc area which is discussed later.
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Table 2. Field and rotated data from the calcareous outcrop of Prades, north of Montpellier. For each data set are given the bedding
characteristics, the actual field measurements, and the data characteristics obtained through a rotation which returns the bedding to horizontal

No. Bedding Fault field measurements ) Rotated fault measurements
St Pl Q St P! Q P RD Az SM St Pl Q Az SM
1 38 29 W 44 32 N 24 E S 86.04 427 N 19.23 R
2 38 29 w 58 39 N 36 E S 94.87 14.89 N 19.16 R
3 38 29 w 70 31 N 28 S 135.01 15.96 E 18.60 R
4 38 29 w 58 56 N 18 E S 7225 2991 N 39.10 R
5 38 29 w 52 42 N 42 S 75.95 15.26 N 37.15 R
5bis 38 29 w 52 42 N 14 S 75.95 15.26 N 364 S
Ster 38 29 W 52 42 N 156 N 75.95 1526 N 149.43 N
6 38 29 w 146 40 w 11 N 110.08 39.98 S 31.00 N
7 38 29 w 48 53 N 10 E S 57.29 24.82 N 3755 S
8 38 29 W 156 4 W 37 N D 145.10 62.62 w 141.32 D
9 38 29 w 124 86 w 28 N D 122.56 88.44 S 122.59 D
10 38 29 w 120 40 S 172 N 92.76 51.20 S 14.05 N
11 K} 9 W 46 37 S 140 N 4327 65.82 E 150.95 N
12 33 29 W 80 k3| N 62 S 141.20 20.73 E 54.22 R
13 38 29 w 72 54 N 36 E S 94.31 3294 N 32.36 R
14 33 29 w 120 47 S 152 N 9791 56.83 S 165.85 N
15 38 29 W 88 49 N 33 E R 117.59 36.00 N 49.25 R
16 38 29 W 74 35 N 48 S 126.52 19.71 N 38.18 R
17 38 29 W 16 25 w 58 R 96.59 10.69 S 63.61 R
18 42 20 W 153 0 W 50 R 127.66 37.00 S 64.51 R
18 bis 42 20 w 132 44 S 57 S N 112.50 4747 S 14.61 N
19 492 20 W 178 36 W 70 R 148.46 25.20 w 79.50 R
20 42 20 w 11 31 w 42 R 156.64 16.97 w 48.04 R
21 71 29 N 176 67 w 73 S N 162.22 62.79 \\4 102.19 N
2 71 29 N 10 53 w9 N 164.84 4443 w 121.67 N
23 71 29 N 130 3 w 134 S 76.06 30.64 S 130.72 N
24 n 29 N 168 28 w 2 R 121.95 36.87 S 6.42 R
25 7 29 N 36 33 W 36 S R 170.49 20.98 w 71.24 R
26 n 29 N 138 86 W 33 N D 138.80 82.65 E 139.60 D
27 71 29 N 176 35 w30 S R 135.24 37.96 w 3211 R
28 60 30 N 62 2 W 8 R 54.64 8.05 S 6.05 N
29 60 30 N 145 37 w59 w R 1343 48.29 S 101.83 S
30 60 30 N 148 57 w 54 S R 13045 62.80 S 36.47 R
31 60 30 N 162 58 W 48 N D 142.29 56.83 w 135.52 D
32 60 45 N 68 25 N 26 R 50.32 20.48 S 2338 D
33 60 45 N 154 60 W 55 S R 130.21 66.65 S 74.65 R
34 60 45 N 74 34 N 40 R 26.26 14.10 E 31.58 S
35 60 45 N 126 64 S 74 E R 115.30 8705 S 108.80 S
36 60 45 N 58 6 W 42 E R 5491 21.06 N 18.75 S
37 60 45 N 60 50 N 65 E R 60.00 5.00 N 175.08 R
38 60 45 N 64 50 N 65 W R 91.90 580 N 127.57 R
39 60 45 N 36 60 W 4 N R 00.30 24.08 w 1.06 S
40 60 45 N 0 80 W 56 S R 164.80 61.90 w 95.26 R
41 60 45 N 120 57 S 90 R 106.82 84.92 S 100.33 S
41bis 60 45 N 120 57 S 18 E R 106.82 84.92 S 114.28 D
42 60 45 N 20 ¥ 0w 10 S D 111.75 2724 S 40.44 R
43 60 45 N 53 45 w25 N S 147.52 494 w 29.96 N
4 60 45 N 121 90 26 W D 128.60 69.95 N 123.29 D
45 60 45 N 58 57 N 81 w R 5197 12.10 N 139.68 R
46 60 45 N 172 0 W 27 N D 150.46 60.61 w 161.57 D
47 60 45 N 50 90 25 E S 46.00 45.86 N 35.32 S
43 60 45 N 70 85 N 25 E S 75.31 4094 N 46.73 S
49 64 28 N 144 20 W 170 R 98.31 36.70 S 173.61 R
50 64 28 N 156 36 W 45 w R 122.38 43.62 S 120.82 S
51 64 28 N 150 21 w 175 R 101.83 35.65 S 179.59 R
52 64 28 N 42 74 N 25 w S 3529 48.56 w 63.11 S
53 64 28 N 64 34 N 12 R 64.00 6.00 w 7.20 R
54 64 28 N 68 68 N 6 E S 69.76 40,09 N 62.92 S
55 64 28 N 157 40 W 65 w R 126.80 46.20 S 109.30 S
56 70 29 N 62 25 w 16 w R 108.72 540 S 78.97 S
57 58 24 N 176 80 E 25 N D 177.55 88.31 w 177.44 D
58 77 36 N 42 33 E 70 E N 5691 65.40 S 81.90 D
59 77 36 N 72 35 N 43 E R 145.97 307 w 29.90 N
60 7 36 N 140 78 w 17 N S 138.08 84.67 E 136.68 S




Determination of stress tensors from striations on faults 63

Table 3. Characteristics of the 4 tensors obtained at the outcrop of Prades (north of Montpellier). (s etc.) indicates the confidence domain at a
confidence level of 959

g, (5] O3 sd. n
phase of number
number Az. Dip. Az. Dip. Az. Dip. R residuals of data

1 *) ™) ™) *) 307° (5) 7° (5 0.92 (0.09) 7.6 12
2 204° (19) 4° (6) 294° (17) 5° (8) (**) 84° (13) 0.18 (0.09) 6.7 26
3 288° (13) 1° (15) 198° (12) 3° (16) (**) 87° (15) 0.72 (0.13) 5.2 12
4 **) 83° (13) 15° (9) 7° (10) 285° (1) 3 (12) 0.40 (0.11) 6.9 13

* Indicates nearly asymmetrical tensors (R > 0 or R = 1). In these cases only the characteristics of the revolution axis are significant.
** Indicates a nearly vertical direction;; in this case the corresponding azimuth has no significance.

From the sixty-four studied faults, only one does not
correspond to any of the calculated tensors. In the field,
this fault forms in association with another striated fault
plane a dihedron, and probably represents a parasitic
movement imposed by the geometry. Therefore it
cannot be accounted for using our previous assumptions.
Figure 12 summarizes the results.

R=0.82:0.09

R=018:0.09

2
3

R=0.40:0.11
4 w E

Fig. 12. Display of the principal directions (and confidence domain)
and R ratios of the four tensors labelled 1-4 deduced from the data (cf.
Table 3).

Comparison with other microstructures

In order to control our results, the distribution of
stylolites and tension gashes has been studied. Stylolites
are surfaces of preferential dissolution presenting
irregularities or stylolitic peaks. Previous studies have
shown that the peaks have an average direction parallel to
the principal stress direction, ¢, responsible for their
formation. Arthaud (1969) described in the studied
outcrop 96 stylolitic peaks that he attributed to the major
Pyrenean phase (Fig. 13a). His diagram is comparable
with the diagram given here for the direction of the
principal stress, o,, of the second tensor (Fig. 12): the
computed major stress axes o, corresponds exactly to the
maximum density of stylolitic peaks. Furthermore, the
dispersion of the peak directions coincides with the
fluctuations of the tensor about this average position (as

b) Tension gashes

a ) Stylolites

Fig. 13. (a) Density diagram (Schmidt projection, lower hemisphere) of
stylolitic peak directions. Vertical peaks are not displayed. (b) Density
diagram of directions normal to tension gashes.
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explained in the section on monophased data). There are
also stylolites with horizontal NE 110° peaks in agreement
with tensor number 3. Finally, there are numerous
stylolitic peaks perpendicular to the stratification
corresponding to tensor number 4 (these peaks are not
shown on Fig. 13a).

It is well known that tension gashes appear on the
average along planes perpendicular to the o5 direction.
Thus we have made a systematic analysis of these
microstructures. However, in the field, the true tension
gashes are difficult to separate from calcite infillings along
faults or joints between blocks. On the other hand the
anisotropy due to stratification influences the position in
space of the gashes. In the case described here we would
expect to find a large number of horizontal gashes
corresponding to tensors numbers 2 and 3 for which the
minimum stresses, ¢, are vertical. In fact such gashes are
rare in the outcrop because they would be parallel to the
beds which are less than 1m thick. However, in a
neighbouring quarry where the beds are thick, tension
gashes parallel to the stratification are more numerous.
Figure 13(b) shows that the maximum of the tension gash
planes has an orientation N 30° E which may correspond
to tensors numbers 1 or 4; there is no possibility of
distinguishing between them.

Relations with Languedoc tectonics

Since Cretaceous time two important tectonic phases
have affected the rocks in Languedoc: first a so-called
Pyrenean compressive phase, N-S to N 40° E of Eocene
age ; and secondly an Oligocene phase of extensionina N
120° E direction.

The Pyrenean phase (Fig. 10a) was responsible for the
main tectonic structures of Languedoc. It produced
thrusts, folds and important strike-slip faults all of which
allow the average direction of compression to be
determined as N 00—N 30° E. Perturbations exist locally,
particularly in the neighbourhood of large faults. Tensors
number 1 and 2 are attributed to this phase, both
corresponding to a compression directed N 25°E. Tensor
number 1 whose intermediate stress o, is vertical may be
responsible for a bounding strike-slip fault and occurred
before tensor number 2 whose minimum stress, 3, is
vertical. This chronology is justified by the fact that
conjugate strike-slip faults are tilted by a later folding
throughout Languedoc.

Locally, there are microstructures indicating a former
E-W compression which we attribute to tensor number 3.
The chronology of this phase with respect to the others is
difficult to determine precisely. Arthaud (in press)
proposed that this compression could correspond to an
early Pyrenean phase. However, it is difficult to separate
in time this episode from the N 20° E compression. An
alternative explanation is that the microstructures cor-
responding to this E-W compression resulted from a local
secondary effect (stress deviation) of the N 20° E Pyrenean
compression for boundary conditions which still remain
to be determined. Rispoli (in press) shows that such
perturbations exist around metric- to decametric-scale
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strike-slip faults.

We attribute tensor number 4 to the Oligocene
extensional phase which affected all of Languedoc and
created numerous normal faults trending N 20-N 40° E of
which the most important limit large basins of continental
sediments (Fig. 10b).

Conclusion

The four tensors determined correspond to the
observed microstructures and reciprocally there are no
inexplicable microstructures at the scale of the outcrop.
Moreover, three of the four tensors correspond to the
three well known tectonic phases of Languedoc.

CONCLUSIONS

Using a few assumptions, it is possible to give a
quantitative interpretation in terms of stresses from
striations observed on fault planes. A crucial problem for
this interpretation consists in the separation of tectonic
phases and of related observations; an algorithm for
solving the problem has been proposed. Applied on
synthetic data as well as on actual field data, the algorithm
was shown to yield fairly satisfactory results. Besides,
confidence domains for the parameters of the stress tensor
can be determined for each phase.

The proposed method does not require information
other than the observed striations: an initial solution is
automatically provided using a random exploration of the
bounded parameter set. However, it is also possible to
take into account various geological constraints such as
information deduced from stylolites, tension gashes or
observations arising from general studies. In this situation
one or several principal directions of the stress tensor may
be inferred.

The method has already proved its value for studying
various geological problems (Burg & Etchecopar 1979,
Santouil 1980). In a platform area which has
undergone only slight deformation, it is possible to
determine several tectonic phases using indirect
observations. Use of the method in slightly deformed
areas external to orogenic belts would make it possible to
control their geodynamical interpretation.

Acknowledgements—We wish to thank three anonymous referees for
their comments which substantially improved the presentation of our
argument.
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APPENDIX

There are at least four explanations for the presence of angular
deviations between observed and computed striations:

(a) the data are not perfect (it is difficult to measure with an error of
only a few degrees the orientations of ‘fault planes’ and striations);

(b) local fluctuations of the stress tensor can be associated with faults
(Chinnery 1966);

(c) when two or more tectonic phases have followed each other, small
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strains caused by one phase can change in a heterogeneous way the
orientations of structures related to older phases; and

(d) when the fracture surface is of an elongated shape it is possible that
the tangential force applied on the plane and the resulting striations are
not exactly paraliel to each other. Kassir & Sih (1967) have obtained an
approximate solution for the strain around an elliptical surface of
discontinuity in an elastic medium subjected to a uniform stress field : if
the crack is an ellipse (Fig. 14) with centre 0, major and minor semiaxes a
and b, parallel to Ox and Oy, the angles ¢ = (Ox,s) and @ = (Ox, 1),
where s and t are calculated at 0, are binded by: H . tan i = tan w, where

Y (k? + vk'*) E(k) ~ vk’ K (k)
T (k? = v E(k) + vk K(K)

with
a® - b? b
2 k=
a a

k=

v being Poisson’s ratio of the medium, K( ) and E( ) being respectively
the complete elliptical integral of the first and second kind. Table 4 shows
the discrepancy between s and t for four values of the ratio k' = a/b of the
fracture ; it can be bigger than 8° for a fault with an elongation coefficient
of ten. As fault planes are commonly elongated this can play an
important part in the observed residuals.

Fig. 14. Model of an elliptical crack in the oxy plane with major and minor

axes along ox and oy, s is unit vector of the displacement at point o and t

the unit vector of the tangential force (resolved shear stress)
corresponding to the regional stress, that is far from the crack.

Table 4. Value of the angular difference w—y, between
the striation and resolved shear stress on fault plane as
a function of w and k' (see text)

Y 1 2 5 10
w
OC 00 00 OC 00
20° 0° L1° 39° 49°
45° 0° 170 6.6° 8.5°
70° 0 11° 46° 6.2°
900 OC OD 00 OC




